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G(V, E). V represents the features, and E represents the
operators.

e S={h(v), h(e) : Ve E,Vv e V}, here h(-) is the value
function. S defines the continuous state space of F.

® Zero-Cost NAS, proxy is defined as the entropy of S.
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Channel Pruning

e Channel(Filter) Pruning[4]

.
® 1170

® 0.290

® 0820

——

® mAP = 10.3% after sparsifying
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e SCConv: Spatial and Channel Reconstruction Convolution for
Feature Redundancy|3]

e KingSiong's repository: SCConv-Implementation

parameter‘ value
dataset CIFAR-10

epoch 200
Model | Acc(%) | FLOPs(G) | Params(M)
ResNet-50

ResNet-50 with SCConv 92.03 1.86 15.91

04.93 2.62 23.52
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® NMS(Non Maximum Suppression) for Post-Processing

® Greedy-NMS(Original-NMS), taking O(N?) time

e Dynamic density query and fast suppression detection using
KNN structure

® Faster-NMS, taking O(NKlog N) time

K = 3, loU/Density Query Box
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Results
® Results,
Model mAP2 .. | latency(ms) FPS(/s)
yolovbs.pt 37.4 2.78 359.71
env yolovbsu.pt 43.1 1.70 588.24(1 63.53%)
! yolov8n.pt 37.4 1.43 699.30(1 94.41%)
yolov6n.pt 37.5 3.05 327.87(] 8.85%)
env yolov8n.pt 37.4 2.18 458.72
> | xjtun.pt(Ours) 36.7 1.01 523.56

Ltested when server was idle.

2tested when server was not idle.
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Results
® Results,
Model mAP2 .. | latency(ms) FPS(/s)
yolovbs.pt 37.4 2.78 359.71
1 yolovbsu.pt 43.1 1.70 588.24(1 63.53%)
envy
yolov8n.pt 37.4 1.43 699.30(1 94.41%)
yolovén.pt 375 3.05 327.87(] 8.85%)
2 yolov8n.pt 37.4 2.18 458.72
envy .
xjtun.pt(Ours) 36.7 1.91 523.56

e Conclusion: The FPS improvement is at least 95% with 0.7%
accuracy decrease.

Ltested when server was idle.
2tested when server was not idle.
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