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NAS

• NAS(Neural Architecture Search)

• MAE-NAS[5]
• The topology of a network F can be abstracted as a graph

G(V,E). V represents the features, and E represents the
operators.

• S = {h(v), h(e) : ∀e ∈ E, ∀v ∈ V}, here h(·) is the value
function. S defines the continuous state space of F.

• Zero-Cost NAS, proxy is defined as the entropy of S.
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... ... ...
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• mAP = 10.3% after sparsifying
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SCConv

• SCConv: Spatial and Channel Reconstruction Convolution for
Feature Redundancy[3]

• KingSiong’s repository: SCConv-Implementation

parameter value
dataset CIFAR-10
epoch 200

Model Acc(%) FLOPs(G) Params(M)
ResNet-50 94.93 2.62 23.52

ResNet-50 with SCConv 92.03 1.86 15.91
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PConv

• Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural
Networks[1]
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Re-Parameterization

• RepVGG: Making VGG-style ConvNets Great Again[2]
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NMS

• NMS(Non Maximum Suppression) for Post-Processing

• Greedy-NMS(Original-NMS), taking O(N2) time
• Dynamic density query and fast suppression detection using

KNN structure
• Faster-NMS, taking O(NK log N) time

K = 3, IoU/Density Query Box
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Results

• Results,

Model mAPval
50−95 latency(ms) FPS(/s)

env11

yolov5s.pt 37.4 2.78 359.71
yolov5su.pt 43.1 1.70 588.24(↑ 63.53%)
yolov8n.pt 37.4 1.43 699.30(↑ 94.41%)
yolov6n.pt 37.5 3.05 327.87(↓ 8.85%)

env22 yolov8n.pt 37.4 2.18 458.72
xjtun.pt(Ours) 36.7 1.91 523.56

• Conclusion: The FPS improvement is at least 95% with 0.7%
accuracy decrease.

1tested when server was idle.
2tested when server was not idle.
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