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Figure 1: The perplexity (lower scores mean better performance) of
existing widely-used low-bit quantization methods on LLaMA-7B.!

LFrom Figure 1 in [2].
xO@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Background
oe

Background

—s— GPTQ
14 LLM-QAT
—8— OmniQuant

Ours

Perplexity

[ )

16 8 4 2 1
# weight bits

Figure 1: The perplexity (lower scores mean better performance) of
existing widely-used low-bit quantization methods on LLaMA-7B.!

® Existing methods decline when compressing model weights to
1 bit, struggling to maintain effectiveness.

LFrom Figure 1 in [2].
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e PTQ(Post Training Quantization)
® QAT(Quantization Aware Training)

K. Si, sjsinx@stu.xjtu.edu.cn

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

® Bit-Width: 1

sinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
o QAT

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
e QAT

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
o QAT

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
o QAT

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
o QAT

® Why value vectors?

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[e]e] Yolele}

Idea in This Paper

e Bit-Width: 1
® Weight Quantization
o QAT
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® XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks[1]

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing 7 /19


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[eeTe] Yole}

God Knows?

o CNN: (T, W, )

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU



mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[eeTe] Yole}

God Knows?

e CNN: (Z, W, %)
® Find a new binary filter B € {41, —1}*%X/ and a scale
a € Rt such that W ~ aB, then

I+W=1Ix(aB) ‘ (2)
= (I®B)a. (3)

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing 8 /19


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[eeTe] Yole}

God Knows?

e CNN: (Z, W, %)
® Find a new binary filter B € {41, —1}*%X/ and a scale
a € Rt such that W ~ aB, then

I+W ~1Ix(aB) ‘ (2)
= (I®B)a. (3)

® In this paper, Linear layers are designed as

K. Si, sjsinx@stu.xjtu.edu.cn IMKFE, XJTU

Paper Sharing 8 /19


mailto:sjsinx@stu.xjtu.edu.cn

Methodology
[eeTe] Yole}

God Knows?
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® Find a new binary filter B € {41, —1}*%X/ and a scale
a € Rt such that W ~ aB, then

1+W ~ I (aB) X 2)
= (I&B)a. (3)

® In this paper, Linear layers are designed as

Linear Layer

W1 = Sign(W), (4)
Y = LayerNorm ([(X ® g)WL] ®h). (5)
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Balance rank and precision.
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® Why not use low-rank approximation directly?

® Less error[2]

e QAT: based on KD
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Q .
OPT-1.3B LLM-QAT | 4.9¢3
OmniQuant | 42.43
OneBit | 25.42
FP16 12.47
GPTQ 8.7¢3
OPT-2.7B LLM-QAT | 3.7¢3
OmniQuant | 30.25
OneBit 21.86
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Figure 2: Main results of evaluation experiment.}

LFrom Table 1 in [2].
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Figure 3: Memory footprint and bit-width. !

LFrom Figure 3(c) in [2].
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Appendix
Complexity of Two Types

Suppose that X is a n by m matrix, while W is a k by m matrix.
Then, a and b are vectors of length k and m, respectively.

In the former method, when calculating (XW1; © (ba®)), we
need (kx m+ kx m+ nx m x k) multiplications.

In the latter one, we need (n x m+nx mx k+n x k)
multiplications.

The difference between them is

2km — nm — nk = § ((2k — n)(2m — n) — n?). That is to say, a
sufficient condition for the latter method to be better than the
former one is k> nA m> n.
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