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What Is Quantization

• quantization is the process of constraining an input from a
continuous or otherwise large set of values (such as the real
numbers) to a discrete set (such as the integers). [5]

• key msg: a continuous set 7→ a discret set
• what is quantization in DL?
• float 7→ int?
• use less bits
• in general: FP32/FP16 7→ INT8/INT4
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Uniform Quantization

• uniform: the resulting quantized values are uniformly spaced

• any function? a rounding function

r

q
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Uniform Quantization

• range dilemma: FLOAT (−∞,+∞) while INT [−128, 127]

quantization function

q = br/Se − Z (1)

• where S, Z come from?

−127 127

α = −1 β = 1

0

0
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Uniform Quantization

S formula

S =
|β − α|
2l − 1

(2)

• what is the function of Z?
• symmetric or asymmetric
• symmetric: |α| = |β|,Z = 0

• asymmetric: |α| 6= |β|,Z 6= 0
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Rethink of Quantization

• quantize a model

• quantize a module in the model, e.g., a convolution layer
• regard a convolution layer as a matrix

module

input output

weight

quant

quant

• r̃ = (q + Z)× S
• fake quantization, Q/DQ
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Rethink of Quantization

• integer-arithmetic-only quantization[4]

• r(i,j)α = Sα(q(i,j)α + Zα)

matrix multiplication

So(q(i,j)o + Zo) =
n∑

k=1

Si(q(i,k)i + Zi)Sw(q(k,j)w + Zw) (3)

⇒q(i,j)o = Zo + SiSw/So

n∑
k=1

(q(i,k)i + Zi)(q(k,j)w + Zw) (4)

• let M := SiSw
So

• let M = 2−BM0 ⇔ M0 = 2BM[4],
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How to Get Parameters

• what should we know? α and β

• if we know the distribution,

• min-max
• entropy
• percentile

• anyway, we can know what parameters are if we know the data
• activation of a module?
• we do need DATA!
• PTQ (Post-Training Quantization)[1]
• calibration data (mainly use a part of training data)
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How to Get Parameters

• QAT (Quantization-Aware Training)[1]

• after PTQ, fine tune the model[2]
• NOT mutually exclusive

It is some time known as “quantization aware training”.
We don’t use the name because it doesn’t reflect the un-
derneath assumption. If anything, it makes training being
“unaware” of quantization because of the STE approxima-
tion. — pytorch-quantization’s documentation
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Pipeline

• NVIDIA Inc. is astonishing

• NVIDIA invented a new concept
• explicit/implicit quantization[3]

.pt

.onnx

.engine

Quantization

PTQ/QAT
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